Algoritma Haar Cascade Deteksi WajahMenggunakan Phyton

Authors

  • Dede Erwan Universitas Muhammadiyah Bengkulu
  • Yovi Apridiansyah Universitas Muhammadiyah Bengkulu
  • Erwin Dwika Putra Universitas Muhammadiyah Bengkulu
  • Ujang Juhardi Universitas Muhammadiyah Bengkulu

DOI:

https://doi.org/10.54650/jukomika.v5i2.461

Abstract

The face is one of the body parts that exist in humans which is often used as a sign of identification between one person and another, so the face can be said to be a unique thing because it has differences. With these differences, faces are often used as a marker of self-identity so that they can be recognized by others. The introduction of this identity is an important thing that is used in various purposes, such as attendance attendance, online exams, banking transactions, online buying and selling, and so on. Even in the development of technology today is increasingly progressing, one of which is facial recognition technology can be used to access security unlocks on smartphones. In this study, face detection can be done using the Haarcascade method. The Haar Cascade algorithm is one of the algorithms used to detect a face. The algorithm is able to detect quickly and in real time an object including a human face. In analyzing face detection using the Haar cascade algorithm, the input image must match what will be detected so that it can detect the face precisely. The light intensity must be sufficient for the face to be detected. The testing process was carried out with a distance of 50 Cm, 80 Cm and 100 Cm with the results of measurements using a successful matrix confussion with a value of 92%.

References

S. Abidin, “Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab,†J. Teknol. Elekterika, vol. 15, no. 1, p. 21, 2018, doi: 10.31963/elekterika.v15i1.2102.

W. Dwiparaswati and S. Hilmawan, “Implementasi Face Recognition Secara Real-Time Dengan Metode Haar Cascade Classifier Menggunakan Opencv-Python,†vol. 16, pp. 51–59, 2022.

D. Manurung, F. Candra, M. Program, S. Teknik, F. Teknik, and U. Riau, “Perancangan Deteksi Wajah Dan Pengenalan Wajah Menggunakan Metode Viola Jones Dan Jaringan Syaraf Tiruan Menggunakan Raspberry Pi,†vol. 8, pp. 1–9, 2021.

M. N. Baay, A. N. Irfansyah, and M. Attamimi, “Sistem Otomatis Pendeteksi Wajah Bermasker Menggunakan Deep Learning,†J. Tek. ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.59790.

T. Susim and C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,†J. Heal. Sains, vol. 2, no. 3, pp. 534–545, 2021, doi: 10.46799/jsa.v2i3.202.

Y. Apridiansyah, “Penerapan Metode Background Subtraction Untuk Deteksi Gerak Pada Kendaraan Pendahuluan,†vol. 4, pp. 47–56, 2021.

J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering,†JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 148–156, 2021, doi: 10.23887/jstundiksha.v10i2.33636.

S. Amrin, Mita Diah Larasati, Irawan, “Model Waterfall Untuk Pengembangan Sistem Informasi Pengolahan Nilai Pada SMP Kartika XI-3 Jakarta Timur,†J. Tek. Komput. AMIK BSI, vol. VI, no. 1, pp. 135–138, 2020, doi: 10.31294/jtk.v4i2.

A. Zein, “Pendeteksi Multi Wajah,†vol. XII, no. 01, pp. 1–6, 2018.

R. P. H. Sejati and R. Mardhiyyah, “Deteksi Wajah Berbasis Facial Landmark Menggunakan OpenCV Dan Dlib,†J. Teknol. Inf., vol. 5, no. 2, pp. 144–148, 2021, doi: 10.36294/jurti.v5i2.2220.

M. Orisa and T. Hidayat, “Analisis Teknik Segmentasi Pada Pengolahan Citra,†J. Mnemon., vol. 2, no. 2, pp. 9–13, 2019, doi: 10.36040/mnemonic.v2i2.84.

M. R. Kurnia, H. Tjandrasa, and Y. Wijaya, “Implementasi Segmentasi Pembuluh Darah Retina Pada Citra Fundus Mata Menggunakan Tekstur , Thresholding dan Operasi Morfologi,†J. Tek. Pomits, vol. 1, no. 1, pp. 1–6, 2012.

Downloads

Published

2023-01-24

How to Cite

Erwan, D., Apridiansyah, Y., Dwika Putra, E., & Juhardi, U. (2023). Algoritma Haar Cascade Deteksi WajahMenggunakan Phyton. JUKOMIKA (Jurnal Ilmu Komputer Dan Informatika), 5(2), 55–65. https://doi.org/10.54650/jukomika.v5i2.461

Issue

Section

Articles